题目内容

20.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),记数列{bn}的前n项和为Tn.求证:Tn<$\frac{1}{4}$.

分析 (I)利用等差数列的通项公式与前n项和公式即可得出;
(II)由bn=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”与“放缩法”即可证明.

解答 (I)解:设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=2}\end{array}\right.$,
∴an=3+2(n-1)=2n+1.
Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(II)证明:bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{bn}的前n项和为Tn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.
∴${T}_{n}<\frac{1}{4}$.

点评 本题考查了等差数列的通项公式与前n项和公式、“裂项求和”与“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网