题目内容

已知函数f(x)=lnx- (m∈R)在区间[1,e]上取得最小值4,则m=________.
-3e
f′(x)=,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递减,当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3?(-e,-1);若-m>e,即m<-e时,f(x)min=f(e)=1-,令1-=4,得m=-3e,符合题意.综上所述,m=-3e.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网