题目内容
【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.
日销售量(枝) | |||||
销售天数 | 3天 | 5天 | 13天 | 6天 | 3天 |
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.
【答案】(1);(2).
【解析】试题分析: (1)设月销量为,分别计算出和的概率,相加即可;(2)日销售量低于100枝共有8天,从中任选两天促销共有种情况; 日销售量低于50枝共有3天,从中任选两天促销共有种情况,根据古典概率计算即可.
试题解析:(1)设月销量为,则,,
∴.
(2)日销售量低于100枝共有8天,从中任选两天促销共有种情况;日销售量低于50枝共有3天,从中任选两天促销共有种情况.
由古典概型公式得:.
【题目】以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据
房屋面积(平方米) | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出散点图
(2)求线性回归方程
(3)根据(2)的结果估计房屋面积为150平方米时的销售价格.
【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |