题目内容

【题目】已知△ABC的三内角A,B,C所对的边分别是a,b,c,△ABC的面积S= 且sinA=
(1)求sinB;
(2)若边c=5,求△ABC的面积S.

【答案】
(1)解:由余弦定理有c2=a2+b2﹣2abcosC,∴a2+b2﹣c2=2abcosC,

,又

∴cosC=sinC,tanC=1,在△ABC中

,在△ABC中 ,但A+B+C=π,

=

sinB= = × =


(2)解:由正弦定理有 ,又c=5,∴ ,得b=7,

∴S= bcsinA= =


【解析】(1)利用余弦定理、三角形面积计算公式可得C,再利用同角三角函数基本关系式、三角形内角和定理、和差公式即可得出.(2)利用正弦定理、三角形面积计算公式即可得出.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网