题目内容

【题目】已知函数f(x)=a( x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠,则实数c的取值范围为(
A.(0,4)
B.[0,4]
C.(0,4]
D.[0,4)

【答案】A
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
则f(x1)=0,且f(f(x1))=0,
∴f(0)=0,即a( x=0
∴a=0;
故f(x)=bx2+cx;
由f(x)=0得,x=0或x=﹣
f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,
整理得:(bx2+cx)(b2x2+bcx+c)=0,
当c=0时,显然成立;
当c≠0时,方程b2x2+bcx+c=0无根,
故△=(bc)2﹣4b2c<0,
解得,0<c<4.
综上所述,0≤c<4,
故答案选:A.
【考点精析】通过灵活运用函数的零点与方程根的关系,掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网