题目内容
5.${∫}_{-2}^{2}|x-1|dx$=5.分析 原式转化为${∫}_{-2}^{2}$|x-1|dx=${∫}_{1}^{2}$(x-1)dx+${∫}_{-2}^{1}$(1-x)dx,再根据定积分的计算法则计算即可.
解答 解:${∫}_{-2}^{2}$|x-1|dx=${∫}_{1}^{2}$(x-1)dx+${∫}_{-2}^{1}$(1-x)dx=($\frac{1}{2}$x2-x)|${\;}_{1}^{2}$+(x-$\frac{1}{2}$x2)|${\;}_{-2}^{1}$=$\frac{1}{2}$+$\frac{9}{2}$=5,
故答案为:5.
点评 本题考查了定积分的计算,属于基础题.
练习册系列答案
相关题目
16.已知等差数列{an}中,a5=13,S5=35,则公差d=( )
A. | -2 | B. | -1 | C. | 1 | D. | 3 |
20.已知 $sin(α+\frac{π}{6})-cosα=\frac{1}{3}$,则 $2sinαcos(α+\frac{π}{6})$=( )
A. | $-\frac{5}{18}$ | B. | $\frac{5}{18}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
17.将正整数1,2,3,…,n,…,排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用(i,j)表示,则2015可表示为(37,17).
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 | … | |
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | … |
… |
15.某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
(Ⅰ)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为ξ(单位:万元),求ξ的分布列和数学期望E(ξ);
(Ⅱ)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)
统计信息 | 在不堵车的情况下到达城市乙所需时间(天) | 在堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 2 | 3 | $\frac{1}{10}$ | 1.6 |
公路2 | 1 | 4 | $\frac{1}{2}$ | 0.8 |
(Ⅱ)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)