题目内容
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):
空气质量指数 | ||||||
空气质量等级 | 级优 | 级良 | 级轻度污染 | 级中度污染 | 级重度污染 | 级严重污染 |
该社团将该校区在年天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校年月、日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望.
【答案】(Ⅰ)(Ⅱ)
【解析】试题分析: (Ⅰ)根据频率分布直方图知小长方形面积为对应区间概率,先计算空气质量优良区间对应的概率,再根据频数等于总数乘以概率得空气质量优良的天数,(Ⅱ)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据期望公式求数学期望.
试题解析: (Ⅰ)由直方图可估算年(以天计算)全年空气质量优良的天数为
(天).
(Ⅱ)由题可知, 的所有可能取值为: , , , , , , ,
则: ,
.
的分布列为
(元).
练习册系列答案
相关题目