题目内容
(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
.
1 |
6 |
1 |
6 |
分析:根据周角等于360°,得到所有的基本事件对应的图形是360°角的整个平面区域,再根据射线OT落在60°的终边上,得到符合题意的事件对应的图形是所成角为60°的两条射线之间区域.最后用符合题意的图形对应的角度,除以所有的基本事件对应图形的角度,可得OA落在∠xOT内的概率.
解答:解:∵周角等于360°,
∴任作一条射线OA,它的运动轨迹可以绕原点旋转一周,
所以所有的基本事件对应的图形是360°角的整个平面区域.
∵射线OT落在60°的终边上,
∴若OA落在∠xOT内,符合题意的事件对应的图形是所成角为60°的两条射线之间区域,
记事件X=“任作一条射线OA,OA落在∠xOT内”,
可得所求的概率为:P(x)=
=
故答案为:
∴任作一条射线OA,它的运动轨迹可以绕原点旋转一周,
所以所有的基本事件对应的图形是360°角的整个平面区域.
∵射线OT落在60°的终边上,
∴若OA落在∠xOT内,符合题意的事件对应的图形是所成角为60°的两条射线之间区域,
记事件X=“任作一条射线OA,OA落在∠xOT内”,
可得所求的概率为:P(x)=
60 |
360 |
1 |
6 |
故答案为:
1 |
6 |
点评:本题以作一条射线,求落在指定区域的事件概率为载体,着重考查了用几何图形求概率的知识,属于基础题.
练习册系列答案
相关题目