题目内容

如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EFBC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.
(1)求证:EG⊥平面CDE;
(2)在棱BC是否存在点M,使GM平面CDE,若存在,找出点M;若不存在,说明理由.
证明:(1)∵EFBC,ADBC,∴EFAD.
在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,
又由FA⊥平面ABCD,得AF⊥CD,
∵正方形ABCD中CD⊥AD,∴CD⊥平面ADEF,
∵EG?平面ADEF,∴CD⊥EG,
∵CD∩DE=D,∴EG⊥平面CDE;…(6分)
(2)在BC存在点M,BC=3BM,使GM平面CDE
取DE中点H,连接GM、GH、CH,
∵在梯形ADEF中,G是AF中点,
GH=
1
2
(AD+EF=2)
,GHAD,
∵BCAD,BC=AD=3,BC=3BM,∴CM=2=GH,GHCM,
∴四边形CHGM是平行四边形
∴GMCH,∴GM平面CDE.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网