题目内容

9.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{y≥1}\end{array}}\right.$,则目标函数z=x+3y的最小值是(  )
A.3B.4C.5D.6

分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即看得到z的最小值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+3y得y=-$\frac{1}{3}x+\frac{z}{3}$,
平移直线y=-$\frac{1}{3}x+\frac{z}{3}$,
由图象可知当直线y=-$\frac{1}{3}x+\frac{z}{3}$经过点A时,直线y=-$\frac{1}{3}x+\frac{z}{3}$的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=1}\\{x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),
代入目标函数得z=2+3×1=5.
即z=x+3y的最小值为5.
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网