题目内容
如图,六棱锥的底面是边长为1的正六边形,底面。
(Ⅰ)求证:平面平面;
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。
(Ⅰ)求证:平面平面;
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。
(Ⅰ)详见解析;(Ⅱ)
试题分析:(Ⅰ)由线线垂直得到线面垂直CD⊥平面PAC,进而求证出面面垂直;(Ⅱ)设AP=h,求出平面PDE的一个法向量,再由线面成角的正弦值得到关于h的方程,解出即可.
试题解析:(Ⅰ)在正六边形ABCDEF中,CD⊥AC.
因为PA⊥底面ABCDEF,CDÌ平面ABCDEF,所以CD⊥PA.
又AC∩PA=A,所以CD⊥平面PAC.
因为CDÌ平面PCD,所以平面PAC⊥平面PCD.
(Ⅱ)如图,分别以AC,AF,AP为x轴,y轴,z轴,建立空间直角坐标系A-xyz.
设AP=h(h>0).
则P(0,0,h),C(,0,0),D(,1,0),E(,,0).
=(,0,-h),=(,1,-h),=(-,,0).
设面PDE的一个法向量为n=(x,y,z),则n·=0,n·=0,
所以取n=(h,h,2).
记直线PC与平面PDE所成的角为θ,则
sinθ=|cosá,nñ|==,
由=,解得h=.
所以六棱锥P-ABCDEF高为.
练习册系列答案
相关题目