题目内容
已知函数的图象过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
(Ⅰ)(Ⅱ)在单调减小,在,单调增加。
解析
(本小题满分16分)已知(I)如果函数的单调递减区间为,求函数的解析式;(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;(III)若不等式恒成立,求实数的取值范围.
(本小题满分15分)已知函数(Ⅰ)求的值;(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.
(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.(1)求m、n的值及函数y=f(x)的单调区间;(6分)(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)
商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大
已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;(Ⅲ)若的最小值为1,求a的取值范围。
已知函数=,.(1)求函数在区间上的值域T;(2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;(3
(本小题满分12分)设函数 其中(Ⅰ)求的单调区间;(Ⅱ) 讨论的极值.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间.(Ⅲ)求函数在上的最大值和最小值