题目内容
12.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{1}{{2-{a_n}}}$(Ⅰ)求a2,a3;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)数列{an}的前n项和Sn; 证明sn<n-ln$\frac{n+2}{2}$.
分析 (Ⅰ)代入计算即可得到所求值;
(Ⅱ)运用构造数列,两边减1,再取倒数,结合等差数列的通项公式,即可得到所求;
(Ⅲ)构造f(x)=ln(x+1)-x(x>0),求出导数,运用单调性可得ln(x+1)<x(x>0),有$ln(1+\frac{1}{n+1})<\frac{1}{n+1},1-\frac{1}{n+1}<1-ln(1+\frac{1}{n+1})$,即有$\frac{n}{n+1}$<1-(ln(n+2)-ln(n+1)),再由累加法和裂项相消求和,即可得证.
解答 解:(Ⅰ)由a1=$\frac{1}{2}$,an+1=$\frac{1}{{2-{a_n}}}$,
解得a2=$\frac{1}{2-\frac{1}{2}}$=$\frac{2}{3}$,a3=$\frac{1}{2-\frac{2}{3}}$=$\frac{3}{4}$;
(Ⅱ)由$a{\;}_{n+1}-1=\frac{1}{{2-a{\;}_n}}-1=\frac{{a{\;}_n-1}}{{2-a{\;}_n}}$,
所以$\frac{1}{{a{\;}_{n+1}-1}}=\frac{1}{{a{\;}_n-1}}-1$.
即有$\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2}-1}$-(n-1)=-1-n,
所以${a_n}=\frac{n}{n+1}$;
(Ⅲ)证明:令f(x)=ln(x+1)-x(x>0),
求导f′(x)=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$<0,f(x)在(0,+∞)递减,
可得ln(x+1)<x(x>0),
有$ln(1+\frac{1}{n+1})<\frac{1}{n+1},1-\frac{1}{n+1}<1-ln(1+\frac{1}{n+1})$,
即有$\frac{n}{n+1}$<1-(ln(n+2)-ln(n+1)),
Sn=a1+a2+a3+…+an<n-(ln3-ln2)-(ln4-ln3)-…-(ln(n+2)-ln(n+1))
=n-ln(n+2)-ln2=n-ln$\frac{n+2}{2}$.
则原不等式成立.
点评 本题考查等差数列的通项公式的运用,考查不等式的证明,注意运用构造函数判断单调性证明,考查运算能力,属于中档题.
A. | $\frac{32}{3}π$ | B. | $\frac{{8\sqrt{2}}}{3}π$ | C. | $\frac{4}{3}π$ | D. | $\frac{{\sqrt{2}}}{3}π$ |
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 3 | D. | 2 |
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
A. | 16$\sqrt{2}$ | B. | 16+16$\sqrt{2}$ | C. | 32$\sqrt{2}$ | D. | 16+32$\sqrt{2}$ |