题目内容
【题目】如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证:EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3)
【解析】试题分析:(1)要证,只要证平面;而由题设平面平面且,所以平面,结论得证;
(2)过G作GN⊥CE交BE于M,连DM,由题设可证四边形为平行四边形,所以有
从而由直线与平面平行的判定定理,可证AG∥平面BDE;
(3)欲求几何体EG-ABCD的体积,可先将该几何体分成一个四棱锥和三棱锥.
试题解析:
(1)证明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC, 平面BCEG,
EC⊥平面ABCD,3分
又CD平面BCDA, 故 EC⊥CD4分
(2)证明:在平面BCDG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且
MG∥AD,MG=AD, 故四边形ADMG为平行四边形,
AG∥DM6分
∵DM平面BDE,AG平面BDE,AG∥平面BDE8分
(3)解: 10分
12分
【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(销售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求关于的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?
相关公式: , .
【答案】(1).(2)投入成本20万元的毛利率更大.
【解析】试题分析:(1)由回归公式,解得线性回归方程为;(2)当时, ,对应的毛利率为,当时, ,对应的毛利率为,故投入成本20万元的毛利率更大。
试题解析:
(1), ,
, ,故关于的线性回归方程为.
(2)当时, ,对应的毛利率为,
当时, ,对应的毛利率为,
故投入成本20万元的毛利率更大.
【题型】解答题
【结束】
21
【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.