题目内容

【题目】甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)已知甲船上有男女乘客各3名,现从中任选3人出来做某件事情,求所选出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.

【答案】
(1)解:记男乘客分别为1,2,3,记女乘客分别为4,5,6,从中任取3人有123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456,共20种取法,其中恰含一女乘客的有124,125,126,134,135,136,234,235,236共9种,

∴所求概率P=


(2)解:当甲船的停泊时间为4小时,乙船的停泊时间为2小时,两船不需等待码头空出,则满足x﹣y≥2或y﹣x≥4.

设在上述条件时“两船不需等待码头空出”为事件B,画出区域如图:

P(B)= = =


【解析】(1)利用列举法进行求解即可.(2)利用几何概型求出对应的面积进行求解即可.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网