题目内容
在等差数列{an}中a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
分析:(1)利用等差数列的通项公式即可得出;
(2)由9m<9n-8<92m,得9m-1+
<n<92m-1+
,可得数列{an}中落入区间(9m,92m)内的项的个数bm=92m-1-9m-1-1,利用等比数列的前n项和公式即可得出.
(2)由9m<9n-8<92m,得9m-1+
8 |
9 |
8 |
9 |
解答:解:(1)设等差数列{an}的公差为d,
∵a3+a4+a5=84,a9=73.
∴
,解得
,
∴an=1+(n-1)×9=9n-8.
(2)由9m<9n-8<92m,得9m-1+
<n<92m-1+
,
∴数列{an}中落入区间(9m,92m)内的项的个数bm=92m-1-9m-1,
∴Sm=b1+b2+…+bm
=(92m-1+92m-3+…+91)-(9m-1+9m-2+…+9+1)
=
-
=
-
.
∵a3+a4+a5=84,a9=73.
∴
|
|
∴an=1+(n-1)×9=9n-8.
(2)由9m<9n-8<92m,得9m-1+
8 |
9 |
8 |
9 |
∴数列{an}中落入区间(9m,92m)内的项的个数bm=92m-1-9m-1,
∴Sm=b1+b2+…+bm
=(92m-1+92m-3+…+91)-(9m-1+9m-2+…+9+1)
=
9(92m-1) |
92-1 |
9m-1 |
9-1 |
=
92m+1-9 |
80 |
9m-1 |
8 |
点评:熟练掌握等差数列的通项公式、等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目