ÌâÄ¿ÄÚÈÝ
£¨2012•¸£½¨Ä£Ä⣩£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªÏòÁ¿
ÔÚ¾ØÕóM=
±ä»»Ïµõ½µÄÏòÁ¿ÊÇ
£®
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©ÇóÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãMµÄ¼«×ø±êΪ£¨4
£¬
£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
£¨¦ÁΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÉèʵÊýa¡¢bÂú×ã2a+b=9£®
£¨¢ñ£©Èô|9-b|+|a|£¼3£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Èôa£¬b£¾0£¬ÇÒz=a2b£¬ÇózµÄ×î´óÖµ£®
ÒÑÖªÏòÁ¿
|
|
|
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©ÇóÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãMµÄ¼«×ø±êΪ£¨4
2 |
¦Ð |
4 |
|
£¨¢ñ£©ÇóÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÉèʵÊýa¡¢bÂú×ã2a+b=9£®
£¨¢ñ£©Èô|9-b|+|a|£¼3£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Èôa£¬b£¾0£¬ÇÒz=a2b£¬ÇózµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©£¨¢ñ£©ÓÉÌõ¼þ¿ÉµÃ
=
£¬ÓÉ´ËÇóµÃmµÄÖµ£®
£¨¢ò£©ÏÈÇó³ö M-1=
£¬ÉèÇúÏß y2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x¡ä£¬y¡ä£©£¬¿ÉµÃ
£¬´úÈëÇúÏß y2-x+y=0»¯¼òµÃµ½½á¹û£®
£¨2£©½â£º£¨¢ñ£©ÓɵãMµÄ¼«×ø±êÇóµÃµÃµãMµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£¬´Ó¶øµÃµ½Ö±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌΪ£¨x-1£©2+y2=2£¬ÇóµÃÔ²ÐĺͰ뾶r£¬¸ù¾ÝµãMÔÚÇúÏßCÍ⣬¿ÉµÃµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r£®
£¨3£©°ÑÌõ¼þת»¯Îª|6-b|=2|a|£¬²»µÈʽ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬ÓÉ´ËÇóµÃaµÄÈ¡Öµ·¶Î§£®
£¨¢ò£©ÒòΪa£¬b£¾0£¬¿ÉµÃ z=a2 b=a•a•b£¬ÀûÓûù±¾²»µÈʽÇóµÃzµÄ×î´óÖµ£®
|
|
£¨¢ò£©ÏÈÇó³ö M-1=
|
|
£¨2£©½â£º£¨¢ñ£©ÓɵãMµÄ¼«×ø±êÇóµÃµÃµãMµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£¬´Ó¶øµÃµ½Ö±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌΪ£¨x-1£©2+y2=2£¬ÇóµÃÔ²ÐĺͰ뾶r£¬¸ù¾ÝµãMÔÚÇúÏßCÍ⣬¿ÉµÃµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r£®
£¨3£©°ÑÌõ¼þת»¯Îª|6-b|=2|a|£¬²»µÈʽ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬ÓÉ´ËÇóµÃaµÄÈ¡Öµ·¶Î§£®
£¨¢ò£©ÒòΪa£¬b£¾0£¬¿ÉµÃ z=a2 b=a•a•b£¬ÀûÓûù±¾²»µÈʽÇóµÃzµÄ×î´óÖµ£®
½â´ð£º£¨1£©½â£º£¨¢ñ£©ÒòΪ
=
£¬
ËùÒÔ£¬
=
£¬¼´ m=1£®¡£¨3·Ö£©
£¨¢ò£©ÒòΪM=
£¬ËùÒÔ M-1=
£®¡£¨4·Ö£©
ÉèÇúÏß y2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x¡ä£¬y¡ä£©£¬
ÓÉ
=
=
£¬¡£¨5·Ö£©
ËùÒÔ
µÃ
´úÈëÇúÏß y2-x+y=0µÃ y¡ä2=x¡ä£®¡£¨6·Ö£©
ÓÉ £¨x£¬y£©µÄÈÎÒâÐÔ¿ÉÖª£¬
ÇúÏß y2-x+y=0ÔÚ¾ØÕó M-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÇúÏß·½³ÌΪ y2=x£®¡£¨7·Ö£©
£¨2£©½â£º£¨¢ñ£©ÓɵãMµÄ¼«×ø±êΪ£¨4
£¬
£©µÃµãMµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£¬
ËùÒÔÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³ÌΪy=x£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì
£¨¦ÁΪ²ÎÊý£©
»¯ÎªÆÕͨ·½³ÌΪ £¨x-1£©2+y2=2£¬¡£¨5·Ö£©
Ô²ÐÄΪA£¨1£¬0£©£¬°ë¾¶Îªr=
£®
ÓÉÓÚµãMÔÚÇúÏßCÍ⣬¹ÊµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r=5-
£®¡£¨7·Ö£©
£¨3£©½â£º£¨¢ñ£©ÓÉ2a+b=9µÃ9-b=2a£¬¼´|6-b|=2|a|£®
ËùÒÔ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬½âµÃ-1£¼a£¼1£®
ËùÒÔaµÄÈ¡Öµ·¶Î§£¨-1£¬1£©£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪa£¬b£¾0£¬ËùÒÔ z=a2 b=a•a•b¡Ü(
)2=33=27£¬¡£¨6·Ö£©
µ±ÇÒ½öµ±a=b=3ʱ£¬µÈºÅ³ÉÁ¢£® ¹ÊzµÄ×î´óֵΪ27£®¡£¨7·Ö£©
|
|
|
ËùÒÔ£¬
|
|
£¨¢ò£©ÒòΪM=
|
|
ÉèÇúÏß y2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x¡ä£¬y¡ä£©£¬
ÓÉ
|
|
|
|
ËùÒÔ
|
|
ÓÉ £¨x£¬y£©µÄÈÎÒâÐÔ¿ÉÖª£¬
ÇúÏß y2-x+y=0ÔÚ¾ØÕó M-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÇúÏß·½³ÌΪ y2=x£®¡£¨7·Ö£©
£¨2£©½â£º£¨¢ñ£©ÓɵãMµÄ¼«×ø±êΪ£¨4
2 |
¦Ð |
4 |
ËùÒÔÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³ÌΪy=x£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì
|
»¯ÎªÆÕͨ·½³ÌΪ £¨x-1£©2+y2=2£¬¡£¨5·Ö£©
Ô²ÐÄΪA£¨1£¬0£©£¬°ë¾¶Îªr=
2 |
ÓÉÓÚµãMÔÚÇúÏßCÍ⣬¹ÊµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r=5-
2 |
£¨3£©½â£º£¨¢ñ£©ÓÉ2a+b=9µÃ9-b=2a£¬¼´|6-b|=2|a|£®
ËùÒÔ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬½âµÃ-1£¼a£¼1£®
ËùÒÔaµÄÈ¡Öµ·¶Î§£¨-1£¬1£©£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪa£¬b£¾0£¬ËùÒÔ z=a2 b=a•a•b¡Ü(
a+b+c |
3 |
µ±ÇÒ½öµ±a=b=3ʱ£¬µÈºÅ³ÉÁ¢£® ¹ÊzµÄ×î´óֵΪ27£®¡£¨7·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²é¾ØÕóÓë±ä»»µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£®¿¼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£®¿¼²é¾ø¶Ô²»µÈʽ¡¢²»µÈʽ֤Ã÷µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢ÊýÐνáºÏ˼Ï룮ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿