题目内容

 对实数a和b,定义运算“⊕”:a⊕b=设函数f(x)=(x2-2)⊕(x-x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是

A.(-∞,-2]∪            B.(-∞,-2]∪

C.               D.

 

【答案】

B

【解析】

试题分析:函数,

由图可知,当.函数f(x)与y=c的图像有两个公共点,

的取值范围是,故应选B.

考点:函数的零点与方程根的关系.

点评:本小题主要考晒函数的零点与方程根的关系、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网