题目内容
【题目】已知椭圆:过点与点.
(1)求椭圆的方程;
(2)设直线过定点,且斜率为,若椭圆上存在,两点关于直线对称,为坐标原点,求的取值范围及面积的最大值.
【答案】(1);(2),.
【解析】
(1)把两点的坐标代入椭圆的方程,求得的值,即可求得椭圆的方程;
(2)设直线AB的方程为,联立方程组,由,即,以及根与系数的关系,得到线段AB的中点坐标,代入直线方程方程,求得,再利用两点间距离公式和点到直线的距离公式,得到的表达式,即可求解.
(1)由题意,可得,解得,所以椭圆的方程为.
(2)由题意,设直线AB的方程为,
由,整理得,
所以,即,……….①
且,
所以线段AB的中点横坐标,纵坐标为,
将代入直线方程,可得 ……… ②,
由①②可得,又,所以,
又,
且原点O到直线AB的距离,
所以,
所以时,最大值,此时,
所以时,最大值.
【题目】下表为2015年至2018年某百货零售企业的年销售额(单位:万元)与年份代码的对应关系,其中年份代码年份-2014(如:代表年份为2015年)。
年份代码 | 1 | 2 | 3 | 4 |
年销售额 | 105 | 155 | 240 | 300 |
(1)已知与具有线性相关关系,求关于的线性回归方程,并预测2019年该百货零售企业的年销售额;
(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下列联表:
持乐观态度 | 持不乐观态度 | 总计 | |
男顾客 | 45 | 15 | 60 |
女顾客 | 30 | 20 | 50 |
总计 | 75 | 35 | 110 |
问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?
参考公式及数据:回归直线方程,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |