题目内容
【题目】如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
【答案】
(1)证明:∵BC=B1C1=1,CD=C1D= BB1=1,∠BCC1= ,∠B1C1D=π﹣∠BCC1= ,
∴BD=1,B1D= ,
∴BB12=BD2+B1D2,∴BD⊥B1D.
∵AB⊥平面BB1C1C,BD平面BB1C1C,
∴AB⊥B1D,又AB平面ABD,BD平面ABD,AB∩BD=B,
∴DB1⊥平面ABD
(2)解:以B为原点,以BB1,BA所在直线为x轴,z轴建立空间直角坐标系B﹣xyz,如图所示:
则A(0,0,2),D( , ,0),B1(2,0,0),A1(2,0,2),
∴ =( ,﹣ ,0), =(﹣2,0,2), =(0,0,2).
设平面AB1D的法向量为 =(x1,y1,z1),平面A1B1D的法向量为 =(x2,y2,z2),
则 , ,即 , ,
令x1=1得 =(1, ,1),令x2=1得 =(1, ,0).
∴cos< , >= = = .
∵二面角A﹣B1D﹣A1是锐角,
∴二面角A﹣B1D﹣A1的平面角的余弦值为 .
【解析】(1)利用余弦定理计算BD,B1D,再由勾股定理的逆定理得出BD⊥B1D,由AB⊥平面BB1C1C得出AB⊥B1D,于是得出B1D⊥平面ABD;(2)以B为原点建立坐标系,求出平面AB1D的法向量 ,平面A1B1D的法向量 ,计算cos< , >即可得出二面角的余弦值.
【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
试验田 | 试验田1 | 试验田2 | 试验田3 | 试验田4 | 试验田5 |
死亡数 | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.
【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数 | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
空气质量等级 | 1级优 | 2级良 | 3级轻度污染 | 4级中度污染 | 5级重度污染 | 6级严重污染 |
该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.
(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.