题目内容

【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

空气质量指数

(0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.

(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.

【答案】解:(Ⅰ)由直方图可估算2017年(以365天计算)全年空气质量优良的天数为: (0.1+0.2)×365=0.3×365=109.5≈110(天).
(Ⅱ)由题可知,X的所有可能取值为:0,10000,20000,30000,40000,50000,60000,
则:
∴X的分布列为

X

0

10000

20000

30000

40000

50000

60000

P

=9000(元)
【解析】(I)利用直方图的性质即可得出.(Ⅱ)由题可知,X的所有可能取值为:0,10000,20000,30000,40000,50000,60000,利用二项分布列的概率与数学期望计算公式即可得出.
【考点精析】本题主要考查了频率分布直方图和离散型随机变量及其分布列的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网