题目内容
11.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,试确定△ABC的形状.分析 把已知条件变形可得,2(a2+b2+c2)=2(ac+ab+cb),配方可得(a-b)2+(b-c)2+(a-c)2=0,从而可得a,b,c的关系,进而判断三角形的形状.
解答 解:∵a2+b2+c2=ab+ac+bc
∴2a2+2b2+2c2=2ab+2ac+2bc
(a-b)2+(b-c)2+(a-c)2=0
∴a=b=c
∴△ABC为等边三角形
点评 本题主要考查了利用对已知配方的技巧,结合结论a2+b2+c2=0?b=c=a=0判断三角形的形状,属于基本知识的考查.
练习册系列答案
相关题目
16.如图所示,平行四边形ABCD中,O为平面内任一点,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrow{d}$,则( )
A. | $\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$=$\overrightarrow{0}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$-$\overrightarrow{c}$-$\overrightarrow{d}$=$\overrightarrow{0}$ | C. | $\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$-$\overrightarrow{d}$=$\overrightarrow{0}$ | D. | $\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$-$\overrightarrow{d}$=$\overrightarrow{0}$ |