ÌâÄ¿ÄÚÈÝ

7£®ÒÑÖªÍÖÔ²µÄÖÐÐÄÊÇ×ø±êÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬×ø±êÔ­µãOµ½¹ýÓÒ½¹µãFÇÒбÂÊΪ1µÄÖ±ÏߵľàÀëΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Éè¹ýÓÒ½¹µãFÇÒÓë×ø±êÖá²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚP¡¢QÁ½µã£¬ÔÚÏ߶ÎOFÉÏÊÇ·ñ´æÔÚµãM£¨m£¬0£©£¬Ê¹µÃ|MP|=|MQ|£¿Èô´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²µÄ¶¨Òå¼°ÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿ÉÇó³ö£»
£¨2£©Èô|MQ|=|MP|£¬°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²µÄ·½³ÌÁªÁ¢²¢ÀûÓøùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÉè´ËÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬¹ýÓÒ½¹µãFÇÒбÂÊΪ1µÄÖ±Ïߵķ½³ÌΪ£ºy=x-c£¬
Ôò$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{c}{\sqrt{2}}=\frac{\sqrt{2}}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{c=1}\\{a=\sqrt{2}}\end{array}\right.$£¬¡àb=1£¬¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©¼ÙÉè´æÔÚµãM£¨m£¬0£©£¨0£¼m£¼1£©Âú×ãÌõ¼þ£¬Ê¹µÃ|MP|=|MQ|£¬
ÒòΪֱÏßÓëxÖá²»´¹Ö±£¬
ËùÒÔÖ±ÏßlµÄ·½³Ì¿ÉÉèΪy=k£¨x-1£©£¨k¡Ù0£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+2k2£©x2-4k2x+2k2-2=0£®
ÓÉ¡÷£¾0ºã³ÉÁ¢£¬¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£®£¨*£©
¡ß|MQ|=|MP|£¬
¡à$\sqrt{£¨{x}_{2}-m£©^{2}+{{y}_{2}}^{2}}$=$\sqrt{£¨{x}_{1}-m£©^{2}+{{y}_{1}}^{2}}$£¬
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£®
»¯Îª£¨1+k2£©£¨x1+x2£©-2m-2k2=0£¬
°Ñ£¨*£©´úÈëÉÏʽµÃ£¨1+k2£©¡Á$\frac{4{k}^{2}}{1+2{k}^{2}}$-2m-2k2=0£¬
»¯Îªm=$\frac{{k}^{2}}{1+2{k}^{2}}$=$\frac{1}{2+\frac{1}{{k}^{2}}}$£¬
¡ßk2£¾0£¬¡à0£¼m£¼$\frac{1}{2}$£®

µãÆÀ ÊìÁ·ÕÆÎÕÍÖÔ²µÄ¶¨Òå¼°ÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÁâÐεÄÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÄÏཻÎÊÌâµÄ½âÌâģʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØϵÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø