题目内容
18.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,若f(f(0))=6,则a的值等于( )A. | 1 | B. | -1 | C. | 2 | D. | 4 |
分析 直接利用分段函数化简求解即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{{3}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,f(0)=2,
f(f(0))=6,
即f(2)=6,可得22+2a=6,
解得a=1.
故选:A.
点评 本题考查分段函数的应用,函数的值以及函数的零点的求法,考查计算能力.
练习册系列答案
相关题目
8.椭圆$\frac{x^2}{6}+\frac{y^2}{2}=1$的离心率为( )
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
6.设a,b∈R,则“a<b”是“(a-b)a2<0”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
13.某地近几年粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
年需求量(万吨) | 257 | 276 | 298 | 298 | 318 |
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.
10.以下个数有可能是五进制数的是( )
A. | 15 | B. | 106 | C. | 731 | D. | 21340 |
8.某企业员工共500人参加“学雷锋”志愿活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(1)表是年龄的频数分布表,求正整数a,b的值;
(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;
(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人数 | 50 | 50 | a | 150 | b |
(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;
(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.