题目内容
9.函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;
(Ⅱ)已知命题p:m∈A,命题q:m∈B,若?p是?q的充分不必要条件,求实数a的取值范围.
分析 (Ⅰ)根据对数函数的性质得到不等式解出从而求出集合A,根据指数函数的性质求出集合B;
(Ⅱ)依题意得到q是p的充分不必要条件,从而B⊆A,得到不等式,解出即可.
解答 解:(Ⅰ)A={x|x2-2x-3>0}
={x|(x-3)(x+1)>0}={x|x<-1,或x>3},
B={y|y=2x-a,x≤2}={y|-a<y≤4-a}.
(Ⅱ)∵?p是?q的充分不必要条件,
∴q是p的充分不必要条件,
∴B⊆A,
∴4-a<-1或-a≥3,
∴a≤-3或a>5,
即a的取值范围是(-∞,-3]∪(5,+∞).
点评 本题考查了充分必要条件,考查对数函数、指数函数的性质,考查集合之间的关系,是一道基础题.
练习册系列答案
相关题目
1.已知平行四边形ABCD中,点E为CD的中点,$\overrightarrow{AM}$=m•$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AD}$(m•n≠0),若$\overrightarrow{MN}$∥$\overrightarrow{BE}$,则$\frac{n}{m}$等于( )
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | -2 |
18.下列结论正确的是( )
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
B. | 已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0” | |
C. | 若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0 | |
D. | “若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ$≠\frac{1}{2}$” |
19.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为( )
A. | 4$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 2 |