题目内容
【题目】设椭圆()的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
【答案】(1); (2)见解析.
【解析】
(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可。(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可。
(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,
∴椭圆的方程可设为.
易求得,∴点在椭圆上,∴,
解得,∴椭圆的方程为.
(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,
,∴.
当过点且与圆相切的切线斜率存在时,可设切线的方程为,,
∴,即.
联立直线和椭圆的方程得,
∴,得.
∵,
∴,
,
∴.
综上所述,圆上任意一点处的切线交椭圆于点,都有.
在中,由与相似得,为定值.
练习册系列答案
相关题目