题目内容
9.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a3=( )A. | -10 | B. | -6 | C. | -8 | D. | -4 |
分析 由题意可得a32=(a3-4)(a3+2),解关于a3的方程可得.
解答 解:∵等差数列{an}的公差为2,且a1,a3,a4成等比数列,
∴a32=a1a4,∴a32=(a3-4)(a3+2),
解得a3=-4
故选:D
点评 本题考查等差数列和等比数列,属基础题.
练习册系列答案
相关题目
17.已知{an}是等差数列,Sn为其前n项和,若S13=S2000,则S2013=( )
A. | -2014 | B. | 2014 | C. | 1007 | D. | 0 |
14.等差数列{an}的前n项和为Sn,已知(a1006-1)3+2014(a1006-1)=1,(a1009-1)3+2014(a1009-1)=-1,则( )
A. | S2014=2014,a1009>a1006 | B. | S2014=2014,a1009<a1006 | ||
C. | S2014=-2014,a1009>a1006 | D. | S2014=-2014,a1009<a1006 |
1.函数y=$\sqrt{1-(\frac{1}{2})^{x}}$的值域为( )
A. | [0,+∞) | B. | (0,1) | C. | [0,1) | D. | [0,1] |