题目内容
【题目】设椭圆的一个顶点与抛物线的焦点重合,、分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
【答案】(1);(2)存在,.
【解析】
(1)求出抛物线的焦点坐标可得出,再结合离心率求出的值,由此可得出椭圆的方程;
(2)分直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,求出、两点的坐标,验证是否成立;在直线的斜率存在时,可设直线的方程为,并设点、,将直线与椭圆的方程联立,并列出韦达定理,结合平面向量数量积的坐标运算得出关于的方程,解出即可.
(1)由抛物线的焦点为,则知,
又结合,,解得,故椭圆方程为;
(2)若直线不存在,可得,,不满足;
故直线斜率必然存在,由椭圆右焦点,可设直线为,
记直线与椭圆的交点、,
由,消去整理得到.
由题意可知恒成立,且有,.
那么
则,解得.
因此,直线的方程为.
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,