题目内容
对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D(其中a<b),使当x∈[a,b]时,
f(x)的值域是[a,b],则称函数f(x)是D上的正函数,区间[a,b]称为f(x)的“等域区间”.
(1)已知函数
是[0,+∞)上的正函数,试求f(x)的等域区间.
(2)试探究是否存在实数k,使函数g(x)=x2+k是(-∞,0)上的正函数?若存在,求出k的取值范围;若不存在,请说明理由.
解:(1)因为
在[0,+∞)上是增函数
所以当x∈[a,b],f(x)的值域是[f(a),f(b)],
又
是[0,+∞)上的正函数
∴
,
∴a=0,b=1,
∴f(x)的等域区间为[0,1].…
(2)设存在实数k,使函数g(x)=x2+k是(-∞,0)上为减函数.
∴当x∈[a,b]时,g(x)的值域是[g(a),g(b)],
若函数g(x)=x2+k是(-∞,0)上的正函数,
则
,
即
,
∵a≠b,∴a+b=-1即b=-a-1,
∵a<b<0即
…
∴关于a的方程a2+a+k+1=0在区间
内有实根,
由a2+a+k+1=0得k+1=-a2-a…,
∵函数y=-a2-a在
上为增函数,
∴当a∈
时,
…
∴
即![](http://thumb.zyjl.cn/pic5/latex/285198.png)
故存在实数
使函数g(x)=x2+k是(-∞,0)上的正函数…
分析:(1)因为
在[0,+∞)上是增函数,所以当x∈[a,b],f(x)的值域是[f(a),f(b)],由此能求出f(x)的等域区间.
(2)设存在实数k,使函数g(x)=x2+k是(-∞,0)上为减函数.当x∈[a,b]时,g(x)的值域是[g(a),g(b)],若函数g(x)=x2+k是(-∞,0)上的正函数,则
.由此能够导出存在实数
,使函数g(x)=x2+k是(-∞,0)上的正函数.
点评:本题考查函数恒成立的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/pic5/latex/658.png)
所以当x∈[a,b],f(x)的值域是[f(a),f(b)],
又
![](http://thumb.zyjl.cn/pic5/latex/658.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/285192.png)
∴a=0,b=1,
∴f(x)的等域区间为[0,1].…
(2)设存在实数k,使函数g(x)=x2+k是(-∞,0)上为减函数.
∴当x∈[a,b]时,g(x)的值域是[g(a),g(b)],
若函数g(x)=x2+k是(-∞,0)上的正函数,
则
![](http://thumb.zyjl.cn/pic5/latex/285193.png)
即
![](http://thumb.zyjl.cn/pic5/latex/285194.png)
∵a≠b,∴a+b=-1即b=-a-1,
∵a<b<0即
![](http://thumb.zyjl.cn/pic5/latex/285195.png)
∴关于a的方程a2+a+k+1=0在区间
![](http://thumb.zyjl.cn/pic5/latex/8128.png)
由a2+a+k+1=0得k+1=-a2-a…,
∵函数y=-a2-a在
![](http://thumb.zyjl.cn/pic5/latex/8128.png)
∴当a∈
![](http://thumb.zyjl.cn/pic5/latex/8128.png)
![](http://thumb.zyjl.cn/pic5/latex/285196.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/285197.png)
![](http://thumb.zyjl.cn/pic5/latex/285198.png)
故存在实数
![](http://thumb.zyjl.cn/pic5/latex/285198.png)
分析:(1)因为
![](http://thumb.zyjl.cn/pic5/latex/658.png)
(2)设存在实数k,使函数g(x)=x2+k是(-∞,0)上为减函数.当x∈[a,b]时,g(x)的值域是[g(a),g(b)],若函数g(x)=x2+k是(-∞,0)上的正函数,则
![](http://thumb.zyjl.cn/pic5/latex/285193.png)
![](http://thumb.zyjl.cn/pic5/latex/285198.png)
点评:本题考查函数恒成立的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目