题目内容
用符号语言表示语句:“直线经过平面内一定点,但在外”,并画出图形。
(文)解: P∈l,P∈,l
解析
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.(Ⅰ)求该安全标识墩的体积;(Ⅱ)证明:直线BD平面PEG.
一个多面体的直观图和三视图如下:(其中分别是中点)(1)求证:平面;(2)求多面体的体积.
如图,四棱锥的底面是矩形,⊥平面,,.(1)求证:⊥平面;(2)求二面角余弦值的大小;(3)求点到平面的距离.
(本小题满分12分)如图,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,∠C=60°,将该梯形绕着AB所在的直线为轴旋转一周,求该旋转体的表面积和体积。
(本小题满分14分).如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC的中点,且DE∥BC.(1)求证:DE∥平面ACD(2)求证:BC⊥平面PAC;(3)求AD与平面PAC所成的角的正弦值;
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知(I))求证:⊥平面;(II)求二面角的余弦值.(Ⅲ)求三棱锥的体积.
(本题满分14分)如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。(I)求证:A1B1//平面ABD;(II)求证:AB⊥CE;(III)求三棱锥C-ABE的体积。
已知顶点的坐标为,,.(1)求点到直线的距离及的面积;(2)求外接圆的方程.