题目内容
已知n为正偶数,用数学归纳法证明( )
1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )
1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证( )
A.n=k+1时等式成立 | B.n=k+2时等式成立 |
C.n=2k+2时等式成立 | D.n=2(k+2)时等式成立 |
B
分析:首先分析题目因为n为正偶数,用数学归纳法证明的时候,若已假设n=k(k≥2,k为偶数)时命题为真时,因为n取偶数,则n=k+1代入无意义,故还需要证明n=k+2成立.
解:若已假设n=k(k≥2,k为偶数)时命题为真,因为n只能取偶数,所以还需要证明n=k+2成立.
故选B.
练习册系列答案
相关题目