题目内容
2.在△ABC中,若a=3,b=4,且a2+b2=c2+ab,求S△ABC.分析 先利用已知条件和余弦定理公式求得cosC的值,进而求得sinC的值,最后利用正弦定理求得答案.
解答 解:∵a2+b2=c2+ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×3×4×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
点评 本题主要考查了正弦定理和余弦定理的应用.注重对学生基础公式的考查.
练习册系列答案
相关题目
17.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.
(I)求该工厂A、B两类工人各有多少人?
(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)
表:100名参加测试工人成绩频率分布表
①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;
②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.
(I)求该工厂A、B两类工人各有多少人?
(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)
表:100名参加测试工人成绩频率分布表
组号 | 分组 | 频数 | 频率 |
1 | [55,60) | 5 | 0.05 |
2 | [60,65) | 20 | 0.20 |
3 | [65,70) | ||
4 | [70,75) | 35 | 0.35 |
5 | [75,80) | ||
6 | [80,85) | ||
合计 | 100 | 1.00 |
②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.