题目内容

16.设定义在R上的函数f(x)=$\left\{\begin{array}{l}{2(x=0)}\\{lo{g}_{3}|x|(x≠0)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0恰有3个不同的实数解,则bc=(  )
A.-9B.9C.-16D.16

分析 设t=f(x),作出函数f(x)的图象,根据关于x的方程f2(x)+bf(x)+c=0恰有3个不同的实数解x1,x2,x3,得到t的取值情况即可求出结论.

解答 解:设t=f(x),
则关于x的方程f2(x)+bf(x)+c=0
等价为t2+bt+c=0,
作出f(x)的图象如图:
由图象可知当t=2时,方程f(x)=2有三个根,
当t≠2时方程f(x)=t有两个不同的实根,
∴若若关于x的方程f2(x)+bf(x)+c=0恰有3个不同的实数解x1,x2,x3
则等价为t2+bt+c=0只有一个根t=2,
由f(x)=2得,x=0,或者log3|x|=2,
即得x=±9,
即三个根x1,x2,x3,分别为0,9或-9,
由韦达定理可得2+2=-b,2×2=c,
即b=-4,c=4,可得bc=-16.
故选:C.

点评 本题主要考查方程根的个数的应用,利用换元法将方程转化为二次方程,根据二次方程根的分布是解决本题的关键,利用数形结合是解决本题的基本思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网