题目内容
12、已知f(x)是定义域为R的奇函数,设f(x)=|x|,x∈(0,1],如果对于任意的x∈R,都有f(x)+f(x+1)=2成立,那么f(9)=( )
分析:欲求f(9),由于都有f(x)+f(x+1)=2成立,故可得f(8)=f(7)=…=f(2)=f(1),由题可得f(1),从而问题得以解决.
解答:解:∵f(x)+f(x+1)=2成立,
故f(8)+f(9)=2,
为了求f(9),只要求f(8),
依次类推,f(8)=f(7)=…=f(2)=f(1),
∵f(x)=|x|,x∈(0,1],
∴f(1)=1,
∴f(9)=1.
故选A.
故f(8)+f(9)=2,
为了求f(9),只要求f(8),
依次类推,f(8)=f(7)=…=f(2)=f(1),
∵f(x)=|x|,x∈(0,1],
∴f(1)=1,
∴f(9)=1.
故选A.
点评:抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目