题目内容

【题目】已知函数是定义在上的偶函数,且当时,.现已画出函数轴左侧的图象,如图所示,根据图象:

(1)请将函数的图象补充完整并写出该函数的增区间(不用证明).

(2)求函数的解析式.

(3)若函数,求函数的最小值.

【答案】(1)图见解析,增区间为(2)(3)

【解析】

1)根据偶函数的图象关于轴对称,可作出的图象,由图象可得的单调递增区间;(2)令,则,根据条件可得,利用函数是定义在上的偶函数,可得,从而可得函数的解析式;(3)先求出抛物线对称轴,然后分当时,当时,当时三种情况,根据二次函数的增减性解答.

解:(1)如图:

函数的增区间为.

(2)当时,

又∵上的偶函数,∴

(3)∵,∴,∴

对称轴.

,即时,

,即时,

,即时,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网