题目内容
【题目】将函数f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移 个单位长度得到y=cosx的图象,则函数f(x)的单调递增区间为( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[4kπ﹣ ,kπ﹣ ](k∈Z)
D.[4kπ﹣ ,kπ+ ](k∈Z)
【答案】B
【解析】解:将函数f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )图象上每一点的横坐标伸长为原来的2倍(纵坐标不变), 可得y=cos( ωx+φ)图象;再向右平移 个单位长度,得到 y=cos[ ω(x﹣ )+φ]=cos( ωx﹣ ω+φ)的图象,
而由已知可得,得到的是函数y=cosx的图象,∴ =1,∴ω=2;
再根据﹣ 2+φ=2kπ,k∈Z,∴φ= ,f(x)=cos(2x+ ).
令2kπ﹣π≤2x+ ≤2kπ,求得kπ﹣ ≤x≤kπ﹣ ,k∈Z,
则函数f(x)的单调递增区间为[kπ﹣ ,kπ﹣ ],(k∈Z),
故选:B.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.
练习册系列答案
相关题目