题目内容

9.过圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)长轴上一点(不含端点)D(x0,0)的直线与椭圆交于M,N,M关于x轴的对称点为Q(与N不重合),求证:直线QN过定点,并求出定点坐标

分析 由M关于x轴的对称点为Q(与N不重合)知直线MN的斜率存在,而当kMN=0时,直线QN为x轴,从而可判断若存在定点,则定点在x轴上,再考虑kMN≠0时,设直线MN的方程为y=k(x-x0),-a<x0<a;从而设M(x1,-y1),N(x2,y2),则Q(x1,y1);联立直线与椭圆方程化简可得(a2k2+b2)x2-2a2k2x0x+a2k2${x}_{0}^{2}$-a2b2=0,从而可得x1+x2=$\frac{2{a}^{2}{k}^{2}{x}_{0}}{{a}^{2}{k}^{2}+{b}^{2}}$,x1•x2=$\frac{{a}^{2}{k}^{2}{x}_{0}^{2}-{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}$;写出直线QN的方程并化简得y=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$x+$\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{x}_{2}-{x}_{1}}$,从而令y=0得,x=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$,从而化简可得x=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$=$\frac{-2{a}^{2}{b}^{2}k}{{a}^{2}{k}^{2}+{b}^{2}}$•$\frac{{a}^{2}{k}^{2}+{b}^{2}}{-2{b}^{2}k{x}_{0}}$=$\frac{{a}^{2}}{{x}_{0}}$为定值,从而证明并写出定点坐标即可.

解答 证明:∵M关于x轴的对称点为Q(与N不重合),
∴直线MN的斜率存在,
①若kMN=0,则MN与x轴重合,此时直线QN的方程为:y=0;
②若kMN≠0,则设直线MN的方程为y=k(x-x0),-a<x0<a;
令M(x1,-y1),N(x2,y2),则Q(x1,y1);
联立方程可得$\left\{\begin{array}{l}{y=k(x-{x}_{0})}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,
化简可得,
(a2k2+b2)x2-2a2k2x0x+a2k2${x}_{0}^{2}$-a2b2=0,
即x1+x2=$\frac{2{a}^{2}{k}^{2}{x}_{0}}{{a}^{2}{k}^{2}+{b}^{2}}$,x1•x2=$\frac{{a}^{2}{k}^{2}{x}_{0}^{2}-{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}$;
kQN=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,
直线QN的方程为:y-y2=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x2),
化简可得,y=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$x+$\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{x}_{2}-{x}_{1}}$,
则若直线QN过定点,则定点必在x轴,
令y=0得,x=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$,
x1•y2-x2•y1=x1•k(x2-x0)-x2•[-k(x1-x0)]
=2kx1•x2-kx0(x1+x2
=$\frac{-2{a}^{2}{b}^{2}k}{{a}^{2}{k}^{2}+{b}^{2}}$;
y2-y1=k(x2-x0)+k(x1-x0
=k(x1+x2)-2kx0
=$\frac{-2{b}^{2}k{x}_{0}}{{a}^{2}{k}^{2}+{b}^{2}}$;
故x=$\frac{{x}_{1}{y}_{2}-{x}_{2}{y}_{1}}{{y}_{2}-{y}_{1}}$
=$\frac{-2{a}^{2}{b}^{2}k}{{a}^{2}{k}^{2}+{b}^{2}}$•$\frac{{a}^{2}{k}^{2}+{b}^{2}}{-2{b}^{2}k{x}_{0}}$
=$\frac{{a}^{2}}{{x}_{0}}$;
故定点坐标为($\frac{{a}^{2}}{{x}_{0}}$,0).

点评 本题考查了直线与圆锥曲线的位置关系的应用,同时考查了根与系数的关系应用及化简方法的应用,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网