题目内容
某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:[0,30),[30,60),[60,90),[90,120),[120,150),[150,180),[180,210),[210.240),得到频率分布直方图如图,已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人.(1)求n的值并求有效学习时间在[90,120)内的频率;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,下列2×2列联表,问:是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
利用时间充分 | 利用时间不充分 | 合计 | |
走读生 | 50 | a | ______ |
住校生 | b | 15 | ______ |
合计 | ______ | 40 | n |
参考公式:
参考列表:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】分析:(1)设第i组的频率为Pi(i=1,2,…,8),则由图可知:学习时间少于60钟的频率为:P1+P2=,由此能够求出n的值并求出有效学习时间在[90,120)内的频率.
(2)求出K2,比较K2与3.841的大小,能够判断是否有95%的把握认为学生利用时间是否充分与走读、住宿有关.
(3)由题设条X的所有可能取值为0,1,2,3,分别求出其概率,能够得到X的分布列和期望.
解答:解:(1)设第i组的频率为Pi(i=1,2,…,8),
则由图可知:P1=×30=,P2=×30=,
∴学习时间少于60钟的频率为:P1+P2=,
由题n×=5,∴n=100,…(2分)
又P3=×30=,P5=×30=,
P6=×30=,P7=×30=,
P8=×30=,
∴P4=1-(P1+P2+P3+P5+P6+P7+P8)
∴
∴有效学习时间在[90,120)内的频率为.(4分)
(2)抽取的100人中,走读生有750×=75人,住读生25人,∴a=25,b=10(6分)
由于K2=>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关.(8分)
(3)由题意知:第①组1人,第②组4人,第⑦组10人,第⑧组5人,共20人
∴P(X=i)=,(i=0,1,2,3),
∴P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,(10分)
∴X的分布列为:
EX=0×+1×+2×+3×=.
点评:本题考查离散型随机变量的分布列和数学期望,是中档题,在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意排列组合和概率知识的灵活运用.
(2)求出K2,比较K2与3.841的大小,能够判断是否有95%的把握认为学生利用时间是否充分与走读、住宿有关.
(3)由题设条X的所有可能取值为0,1,2,3,分别求出其概率,能够得到X的分布列和期望.
解答:解:(1)设第i组的频率为Pi(i=1,2,…,8),
则由图可知:P1=×30=,P2=×30=,
∴学习时间少于60钟的频率为:P1+P2=,
由题n×=5,∴n=100,…(2分)
又P3=×30=,P5=×30=,
P6=×30=,P7=×30=,
P8=×30=,
∴P4=1-(P1+P2+P3+P5+P6+P7+P8)
∴
∴有效学习时间在[90,120)内的频率为.(4分)
(2)抽取的100人中,走读生有750×=75人,住读生25人,∴a=25,b=10(6分)
由于K2=>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关.(8分)
(3)由题意知:第①组1人,第②组4人,第⑦组10人,第⑧组5人,共20人
∴P(X=i)=,(i=0,1,2,3),
∴P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,(10分)
∴X的分布列为:
P | 1 | 2 | 3 | |
X |
点评:本题考查离散型随机变量的分布列和数学期望,是中档题,在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意排列组合和概率知识的灵活运用.
练习册系列答案
相关题目
某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
参考公式:
参考列表:
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分 | 利用时间不充分 | 总计 | |
走读生 | 50 | 25 | 75 |
住宿生 | 10 | 15 | 25 |
总计 | 60 | 40 | 100 |
参考公式:
参考列表:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |