题目内容
【题目】过抛物线的焦点作直线与抛物线交于点、.
(1)求证:不是直角三角形.
(2)当的斜率为时,抛物线上是否存在点,使为直角三角形?若存在,求出所有的点;若不存在,说明理由.
【答案】(1)见解析(2)存在4个点,使为直角三角形: ,,,.
【解析】
(1)如图,抛物线的焦点为,
过点且与抛物线交于点、的所有直线可设为,
与抛物线联立.消去得,有.
进而,.
又,得为钝角.
故不是直角三角形.
(2)当直线的方程为时,解方程组,
可得、.
假设抛物线上存在点,使为直角三角形,分三种情况讨论.
(i)为直角.
此时,以为直径的圆的方程为.
把点、、的坐标代入得
.
整理得.
因为点、在圆上,故当时,必为方程的解.
注意到,
故方程可分解为.
异于点、的点必对应方程的解,有,.
故使的点有两个,.
(ii)为直角.
此时,以为直径的圆的方程为.
把点、、的坐标代入得.
整理得.
解得对应点,对应点.
故存在使为直角三角形.
(iii)为直角.
此时,以为直径的圆的方程为.
把点、、的坐标代入得.
整理得.
解得对应点,对应点.
故存在使为直角三角形.
综上知,存在4个点,使为直角三角形:
,,,.
练习册系列答案
相关题目
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.
该公司将近天,每天揽件数量统计如下:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
(1)某人打算将, , 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;
(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?