题目内容
【题目】已知曲线的极坐标方程为,直线的参数方程为(为参数).
(Ⅰ)求曲线的参数方程与直线的普通方程;
(Ⅱ)设点为曲线上的动点,点和点为直线上的点,且.求面积的取值范围.
【答案】(Ⅰ)(为参数),;(Ⅱ).
【解析】
(Ⅰ)先利用极坐标方程与直角坐标方程互化公式,把曲线的极坐标方程化成直角坐标方程,然后再判断曲线的类型,写出它的参数方程;利用代入消元法把直线的参数方程化为普通方程即可.
(Ⅱ)根据曲线的参数方程设出点的坐标,然后结合点到直线的距离公式、三角形面积公式、辅助角公式进行求解即可.
(Ⅰ)由题意:
,该曲线为椭圆,
曲线的参数方程为(为参数).
由直线的参数方程得代入
得,
直线的普通方程为.
(Ⅱ)设到直线的距离为
面积的取值范围是.
练习册系列答案
相关题目
【题目】有一项针对我国《义务教育数学课程标准》的研究,表1为各个学段每个内容主题所包含的条目数.下图是将下表的条目数转化为百分比,按各学段绘制的等高条形图.由图表分析得出以下四个结论,其中错误的是( )
学段 内容主题 | 第一学段 (1—3年级) | 第二学段 (4—6年级) | 第三学段 (7—9年级) | 合计 |
数与代数 | 21 | 28 | 49 | 98 |
图形与几何 | 18 | 25 | 87 | 130 |
统计与概率 | 3 | 8 | 11 | 22 |
综合与实践 | 3 | 4 | 3 | 10 |
合计 | 45 | 65 | 150 | 260 |
A.除了“综合与实践”外,其他三个内容领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段急剧增加,约是第二学段的3.5倍
B.在所有内容领域中,“图形与几何”内容最多,占.“综合与实践”内容最少,约占
C.第一、二学段“数与代数”内容最多,第三学段“图形与几何”内容最多
D.“数与代数”内容条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”内容条目数,百分比都随学段的增长而增长