题目内容
【题目】(本题满分16分)
设函数.
(1)若=1时,函数取最小值,求实数的值;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)若,证明对任意正整数,不等式都成立.
【答案】(1)- 4.(2)(3)详见解析
【解析】试题分析:(1)利用导数求开区间函数最值,先从导函数出发,探求极值点即为最值点,最后需列表验证:由得(2)函数在定义域上是单调函数,即导函数不变号, ≥0或≤0在( - 1,+ ∞)上恒成立. 即2x2+2x+b≥0在( - 1,+ ∞)上恒成立或2x2+2x+b≤0在( - 1,+ ∞)上恒成立,利用变量分离及函数最值可得:实数b的取值范围是.(3)证明和项不等式,关键分析出和项与通项关系: 即证当时,有f(x) <x3.这可利用导数给予证明
试题解析:(1)由x + 1>0得x> – 1∴f(x)的定义域为( - 1,+ ∞),
对x∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函数f(x)的最小值,故有f/(1) = 0,
解得b=" -" 4. 经检验,列表(略),合题意;
(2)∵又函数在定义域上是单调函数,
∴≥0或≤0在( - 1,+ ∞)上恒成立.
若≥0,∵x + 1>0,∴2x2+2x+b≥0在( - 1,+ ∞)上恒成立,
即b≥-2x2-2x =恒成立,由此得b≥;
若≤0, ∵x + 1>0, ∴2x2+2x+b≤0,即b≤- (2x2+2x)恒成立,
因-(2x2+2x) 在( - 1,+ ∞)上没有最小值,∴不存在实数b使f(x) ≤0恒成立.
综上所述,实数b的取值范围是.
(3)当b=" -" 1时,函数f(x) = x2- ln(x+1),令函数h(x)="f(x)" – x3= x2– ln(x+1) – x3,
则h/(x) =" -" 3x2+2x -,
∴当时,h/(x)<0所以函数h(x)在上是单调递减.
又h(0)=0,∴当时,恒有h(x) <h(0)=0,即x2– ln(x+1) <x3恒成立.
故当时,有f(x) <x3..
∵取则有
∴,故结论成立。
【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如表资料:
组号 | 1 | 2 | 3 | 4 | 5 |
温差x(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出y关于x的线性回归方程 ;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式: = = , )