题目内容
【题目】设函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象有两个不同的公共点,则实数的值是( )
A. B.
C. 或 D. 或
【答案】C
【解析】试题分析:解:因为函数f(x)是定义在R上的偶函数,设x∈[-1,0],则-x∈[0,1],于是f(x)=(-x)2=x2.
设x∈[1,2],则(x-2)∈[-1,0].于是,f(x)=f(x-2)=(x-2)2.
①当a=0时,联立y="x," y=x2,解得x=0,y=0,或x=y=1,即当a=0时,即直线y=x+a与函数y=f(x)的图象有两个不同的公共点.
②当-2<a<0时,只有当直线y=x+a与函数f(x)=x2在区间[0,1)上相切,且与函数f(x)=(x-2)2在x∈[1,2)上仅有一个交点时才满足条件.由f′(x)=2x=1,解得x=∴y=()2=,故其切点为(,)
),∴a=-=-由y=x-, y=(x-2)2(1≤x<2)解之得x=综上①②可知:直线y=x+a与函数y=f(x)在区间[0,2)上的图象有两个不同的公共点时的a的值为0或-又函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x),实数a的值为或,(n∈Z).故应选C.
练习册系列答案
相关题目