题目内容
11.已知函数y=f(x)为R上可导函数,且对?x∈R都有f(x)=-x3f′(1)-8x成立,则函数y=f(x),x∈[-1,1]的值域为[-6,6].分析 设t=2x则x=$\frac{1}{2}$t,代入f(2x)=x3f′(1)-10x化简,把t换成x求出f(x)的解析式,由求导公式求出f′(x),令x=1代入列出方程求出f′(1),代入f′(x)并判断符号,从而得到函数f(x)在[-1,1]上的单调性,求出函数的最值,即可求出函数的值域.
解答 解:设t=2x,则x=$\frac{1}{2}$t,代入f(2x)=x3f′(1)-10x得,
y=$\frac{1}{8}$t3f′(1)-5t,则f(x)=$\frac{1}{8}$t3f′(1)-5x,
所以f′(x)=$\frac{3}{8}$x2f′(1)-5,
令x=1代入上式可得,f′(1)=f′(1)-5,解得f′(1)=-8,
所以f(x)=-x3-5x,则f′(x)=-3x2-5<0,
则函数f(x)在[-1,1]上是减函数,
当x=-1时,函数f(x)取到最大值f(-1)=6,
当x=1时,函数f(x)取到最小值f(1)=-6,
所以所求的函数值域是[-6,6].
点评 本题考查求导公式,导数与函数的单调性的关系,以及换元法求函数的解析式,属于中档题.
练习册系列答案
相关题目
1.设点P在曲线y=ex-x上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )
A. | [0,$\frac{π}{2}$)∪($\frac{3π}{4}$,π) | B. | ($\frac{3π}{4}$,π) | C. | [0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π) | D. | ($\frac{π}{4}$,$\frac{π}{2}$) |
2.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+2)=-f(x),若f(1)=2,则f(2015)=( )
A. | -2 | B. | 2 | C. | 2013 | D. | 2012 |
20.直线$\left\{\begin{array}{l}x=3-t\\ y=4+t\end{array}\right.$,(t为参数)上与点P(3,4)的距离等于$\sqrt{2}$的点的坐标是( )
A. | (4,3) | B. | (-4,5)或(0,1) | C. | (2,5) | D. | (4,3)或(2,5) |
9.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据如表:
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.
(1)求$\overline{x}$、$\overline{y}$;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归方程.
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$、$\overline{y}$;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归方程.