题目内容

定义平面向量之间的一种运算“⊙”如下:对任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),点N(x,y)满足
ON
=a⊙b(其中O为坐标原点),则|
ON
|2
的最大值为(  )
A、
2
B、2+
2
C、2-
2
D、2
分析:
ON
=a⊙b=(cosθ+sinθ,-
2
sinθ),知|
ON
|
2
=(cosθ+sinθ)2+(-
2
sinθ)
2
=sin2θ-cos2θ+2=
2
sin(2θ-
π
4
)+2
,由此能求出|
ON
|2
的最大值.
解答:解:
ON
=a⊙b=(cosθ+sinθ,-
2
sinθ),
|
ON
|
2
=(cosθ+sinθ)2+(-
2
sinθ)
2

=sin2θ-cos2θ+2
=
2
sin(2θ-
π
4
)+2

|
ON
|2
的最大值为2+
2

故选B.
点评:本题考查向量的数量积的运算,解题时要注意新定义运算的灵活运用,合理地运用三角函数的性质解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网