题目内容

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
?
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
?
b
=0
;(2)
a
?
b
=
b
?
a
;(3)对任意的λ∈R,有
a
)?
b
=λ(
a
?
b
)
;(4)(
a
*
b
2
+(
a
b
2
=|
a
|2?|
b
|2
.(注:这里
a
?
b
a
b
的数量积)其中所有真命题的序号是
 
分析:依据题中的定义运算“*”,逐一检验各个选项中的等式两边是否相等,从而得出结论.
解答:解:(1)设
a
=(x,y),∵若
a
b
共线,则
b
=(λx,λy ),
a
*
b
=x•λy-y•λx=0,故(1)正确;
(2)
a
?
b
=mq-np
,而
b
*
a
=np-mq,故(2)不正确;
(3)对任意的λ∈R,有 λ
a
*
b
=(λm,λn )*(p,q)=λmq-λnp,
λ( 
a
*
b
)=λ (mq-np)=λmq-λnp,∴λ
a
*
b
=λ( 
a
*
b
) 成立,故(3)正确;
(4) (
a
*
b
)
2
+(
a
b
)
2
=(mq-np)2+(mp+nq)2=m2q2+n2p2+m2p2+n2q2
|
a
|
2
|
b
|
2
=(m2+n2)(p2+q2)=m2q2+n2p2+m2p2+n2q2,故(4)正确.
综上,(1),(3),(4)正确,
故答案为:(1),(3),(4).
点评:本题考查两个向量的数量积的运算,共线向量的性质,属于创新题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网