题目内容
【题目】如图的空间几何体中,四边形为边长为2的正方形,平面,,,且,.
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)分别取的中点,,连接,,,首先证明出四边形为平行四边形得到,接着通过证明面来得到面,通过面面垂直判定定理即可得结果;
(2)如图所示:取中点,记,连接,,利用线面平行性质定理证出两面的交线与平行,然后再证出,可得为平面与平面ABCD所成二面角的平面角,在中即可求得答案.
(1)如图所示:
分别取的中点,,连接,,,
∵,,,,
∴,且,,
∴四边形为平行四边形,∴,
由于,为的中点,四边形为边长为2的正方形
∴,
又∵平面,∴,
又∵,∴面,
∴面,
∴平面平面.
(2)如图所示:取中点,记,连接,,
由(1)知,,∴面ABCD,
记面面,则
易得,即,
又∵平面,∴,
又∵,,
∴面,∴,即为直角三角形,
同理为直角三角形,
由于,,
由,则,∴,
∴,即,
∴则为平面与平面ABCD所成二面角的平面角,
由四边形为边长为2的正方形得,
∴,∴,
即平面与平面所成的锐二面角的余弦值为.
【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
男性 | 女性 | 合计 | |
消费金额 | |||
消费金额 | |||
合计 |
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |