题目内容
【题目】如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.
【答案】
(1)解:如图,连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB.
∴AB是⊙O的切线
(2)解:∵BC是圆O切线,且BE是圆O割线,
∴BC2=BDBE,
∵tan∠CED= ,∴ .
∵△BCD∽△BEC,∴ ,
设BD=x,BC=2x.又BC2=BDBE,∴(2x)2=x(x+6),
解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5
【解析】(1)要想证AB是⊙O的切线,只要连接OC,求证∠ACO=90°即可;(2)先由三角形判定定理可知,△BCD∽△BEC,得BD与BC的比例关系,最后由切割线定理列出方程求出OA的长.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为(为参数).
练习册系列答案
相关题目