题目内容
如图,直角梯形
与等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041408485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041424403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041455412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041533544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041548720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041580545.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041595580.png)
(2)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
(1)取
中点
,连结
,
.证得
,由四边形
为直角梯形,得到
,证得
平面
.推出
.
(2)直线
与平面
所成角的正弦值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041424403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041673300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041689406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041720388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041736580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041533544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041782418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041798473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041814582.png)
(2)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041860428.png)
试题分析:(1)证明:取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041424403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041673300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041689406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041720388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110419384557.jpg)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041954540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041736580.png)
因为四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041548720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041533544.png)
所以四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042126510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042141557.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041782418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041798473.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041814582.png)
(2)解法1:因为平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042219511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041533544.png)
所以BC⊥平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041408485.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042282545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
设BC=a,则AB=2a,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042344604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042375627.png)
则直角三角形CBE中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110423911201.png)
即直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041860428.png)
解法2:因为平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042219511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041736580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110425315798.jpg)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042547428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041392539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042578546.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042594603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042625529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042640485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042656711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042672418.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110427031812.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042718669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042750671.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011042812302.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240110428281804.png)
即直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041611424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041626480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011041860428.png)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离及体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题给出了两种解法,便于比较借鉴。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目