题目内容
已知椭圆
的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)求椭圆
及动圆圆心轨迹
的方程;
(2) 在曲线
上有两点
、
,椭圆
上有两点
、
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131497991176.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149893248.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149909338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149940441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149955352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149987333.png)
(1)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150065336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150080313.png)
(2) 在曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150080313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150111399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150127357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150065336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150158289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150189333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150205542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150236502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150252437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150283472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150299736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150330654.png)
(1)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150377627.png)
(2)四边形PMQN面积的最小值为8
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150361828.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150377627.png)
(2)四边形PMQN面积的最小值为8
试题分析:解:(1)(ⅰ)由已知可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131504081649.png)
则所求椭圆方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150361828.png)
(ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150080313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150470431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013149987333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150377627.png)
(2)当直线MN的斜率不存在时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150533614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150548515.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131505791581.png)
设直线MN的斜率为k,则k≠0,直线MN的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150767615.png)
直线PQ的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150798703.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131508131447.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150845971.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150860310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150876909.png)
由抛物线定义可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131509072132.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131509381283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013150860310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131509851024.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131510011634.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131510323097.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151047482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151079444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151094357.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131511251284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240131511411698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151157604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151188877.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151219614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013151235744.png)
所以四边形PMQN面积的最小值为8 12分
点评:主要是考查了轨迹方程的求解,以及联立方程组结合韦达定理来求解面积,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目