题目内容

【题目】如图,在正方体ABCD﹣A1B1C1D1 , 若E是AD的中点,则异面直线A1B与C1E所成角等于

【答案】90°
【解析】解:以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
设正方体ABCD﹣A1B1C1D1的棱长为2,
则A1(0,0,2),B(2,0,0),C1(2,2,2),E(0,1,0),
=(2,0,﹣2),=(﹣2,﹣1,﹣2),
设异面直线A1B与C1E所成角为θ,
则cosθ==0,
∴θ=90°.
∴异面直线A1B与C1E所成角等于90°.
所以答案是:90°.

【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网